МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Сборник тезисов докладов конгресса молодых ученых

Выпуск 2

Санкт-Петербург 2014 Сборник тезисов докладов конгресса молодых ученых, Выпуск 2. – СПб: Университет ИТМО, 2014. – 485 с.

В издании «Сборник тезисов докладов конгресса молодых ученых, Выпуск 2», публикуются работы участников, выступивших на заседаниях научных школ и секций III Всероссийского конгресса молодых ученых, который состоялся 8–11 апреля 2014 года в Университете ИТМО.

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена Программа развития государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики» на 2009–2018 годы.

© Университет ИТМО, 2014

© Авторы, 2014

измерениях в зоне ABA составило $81,2\pm8,5\%$, для индусов $73,8\pm3,4\%$, для арабов $68,1\pm4,7\%$, а для африканцев $68,9\pm7,8\%$ соответственно. Значение данного параметра при проведении исследований в области предплечья в группе европейцев составило $69,1\pm8,5\%$, для индусов $63,0\pm4,9\%$, для арабов $55,9\pm3,5\%$, а для африканцев $36,0\pm2,2\%$. Общепринято, что в норме данный показатель для кожи с ABA приблизительно равен 70-80%.

Полученные экспериментальные данные являются яркой иллюстрацией того, что уровень регистрируемых в ОТО сигналов при зондировании кожи излучением зеленого и красного лазеров для групп людей с различными этническими типами кожи существенно различен. И, как следствие, расчетные значения параметров микроциркуляторно-тканевых систем $(S_tO_2,\ V_b,)$ являются некорректными для этнических типов кожи, имеющих повышенный уровень меланина в отличие от европейского типа, под который и осуществляется калибровка текущей приборной реализации канала ОТО. Таким образом, в работе оценено влияние меланина на регистрируемые сигналы в ОТО при зеленых и красных лазерах зондирования кожи, на основе которого можно сделать вывод о необходимости индивидуального учета оптических параметров кожи человека, а именно вклада в общее поглощение меланина в коже, при создании математических моделей для данной диагностической технологии.

УДК 611.018 + 616.091.8

РАЗРАБОТКА УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ГИДРАТАЦИИ БИОЛОГИЧЕСКИХ ТКАНЕЙ В НОРМЕ И ПРИ РАЗЛИЧНЫХ ПАТОЛОГИЯХ В.А. Смолин

(Филиал «Национальный исследовательский университет «МЭИ» в г. Смоленске) **Научные руководители:**

д.т.н., доцент И.В. Якименко (Филиал «Национальный исследовательский университет «МЭИ» в г. Смоленске); д.м.н., профессор В.А. Глотов («Смоленская государственная медицинская академия» Минздрава России)

Органы и ткани живого организма в зависимости от структуры и функционального состояния могут содержать от 50 до 80% воды. Вода в живом организме содержится в двух видах: свободная вода и связанная вода. Связанная вода образует прочные связи с органическими молекулами, свободная вода подвижна, ее количество может заметно изменяться в зависимости от функционального состояния организма и определяет степень гидратации тканей.

В реальной клинической практике существующие технические возможности определения степени гидратации биологических объектов ограничены и практически не применяются, любые заключения о причинах смерти из-за отека не являются достаточно и количественно обоснованы. Создание прибора, который позволял бы быстро, просто, точно биологических определять степень гидратации тканей, полученных при патологоанатомических И судебно-медицинских вскрытиях, также при гистофизиологических исследованиях лекарственных препаратов, направленных уменьшение степени гидратации тканей, весьма актуально. Предлагаемый подход продолжает изыскания проекта РФФИ №94-04-13544 и №96-04-50991.

Целью работы являлась разработка и доказательство работоспособности способа определения степени гидратации биологических тканей на основе эффекта изменения объема системы биологическая ткань — этанол в процессе их взаимодействия; изучение содержания свободной воды (степени гидратации) в плотных и жидких образцах биологических тканей организма, без разрушения анатомической структуры последних, в норме и при различных патологиях.

Базовыми положениями исследования являются: известный эффект нарушения аддитивности объема системы при смешивании воды с этанолом.

Промежуточными результатами при написании работы являются: анализ существующих методов определения степени гидратации биологических тканей; математическое моделирование эффекта нарушения аддитивности объема системы вода – этанол

Основным результатом работы является: разработка устройства для определения степени гидратации биологических тканей на основе эффекта нарушения аддитивности объема системы при взаимодействии этанола с биологическими тканями; определение содержания свободной воды (степени гидратации) в плотных и жидких образцах биологических тканей организма в норме и при различных патологиях; разработка методических рекомендаций для применения разработанного устройства в практике патологоанатомических отделениях и судебно-медицинских бюро, а также научно-исследовательских лабораториях медико-биологического профиля.

Практическим результатом является создание устройства для определения степени гидратации биологических тканей, который позволит получить спектры гидратации биологических тканей организма в норме и при различных заболеваниях.

617-089:621.375.826

ОБРАБОТКА МЯГКОЙ БИОТКАНИ IN VITRO ИЗЛУЧЕНИЕМ ${\rm CO_2}$ -ЛАЗЕРА ${\rm C}$ РАЗЛИЧНЫМИ СКОРОСТЯМИ ВЫПОЛНЕНИЯ РАЗРЕЗА

К.Н. Чайников

Научный руководитель – к.ф-м.н., доцент А.В. Скрипник

 ${
m CO_2}$ -лазер с длиной волны 10,6 мкм активно используется для хирургии мягких биотканей. Это связано с высоким поглощением излучения данного источника входящей в их состав водой.

Одним из способов клинического применения CO_2 -лазера является формирование в биоткани протяженных лазерных ран или лазерных разрезов, которые обычно проводятся врачом-хирургом вручную. Очевидно, что скорость обработки при подобном подходе может меняться, а это в свою очередь способно влиять на конечный результат операции.

В данной работе были изучены последствия неконтактного применения в отношении мягкой биоткани излучения CO_2 -лазера в часто используемых в хирургической практике условиях, а именно: излучение имело среднюю мощность порядка 5 Вт; скорость перемещения луча по поверхности биоткани задавалась в пределах диапазона от 1,0 до 12,5 мм/с. Причем для задания величины скорости использовался специальный сканер.

Излучение доставлялось на поверхность биоткани посредством фокусирующей линзы с фокусным расстоянием 110 мм. Размер пучка в месте обработки составил порядка 1 мм.

В качестве мягкой биоткани были использованы фрагменты мяса курицы, принадлежащие бедренной части ноги птицы. Состояние – парное.

В роли оценочных критериев выступили результаты макро- и микроизлучения внешнего вида мест облучения, а также количественная оценка геометрических параметров гистологических срезов, выполненных на характерных участках протяженных лазерных ран поперек направления их формирования. В последнем случае акцент делался на определение масштабов поверхностного и глубинного видоизменения биоткани.

Было установлено, что повышение скорости обработки с 1,0 до 12,5 мм/с приводит:

- к уменьшению ширины лазерной реза более чем в 3,0 раза;
- к сокращению глубины лазерного реза более чем в 2,5 раза;
- к снижению показателя травматичности окружающих место облучения биотканей на 30%.

живые системы, биомедицинские технологии и томография	220
Абрамович Н.Д. (Белорусский государственный университет информатики и	
радиоэлектроники, Минск). Исследование связи параметров спекл-структуры многократно	O
рассеянного света в многослойных биотканях с их биофизическими характеристиками	220
Афанасьева А.С. (Санкт-Петербургский государственный политехнический университет)	
Измайлов С.А. (Санкт-Петербургский государственный университет). Исследование	
молекулярных механизмов гидратации лигандов в атфазах человека методами молекулярно	ого
моделирования и молекулярной динамики	
Гайдуков В.С. Разработка схемы регистрации и обработки сигналов дыхательной	
	223
Долгушина Л.В. Государственный университет – учебно-научно-производственный	
комплекс, Орел). Оценка влияния кожного пигмента меланина на регистрируемые	
	225
Домнин К.Г. (Санкт-Петербургский государственный политехнический университет).	
Исследование пространственного распределения светового поля рассеянного	
	226
Дрёмин В.В. (Государственный университет – учебно-научно-производственный комплекс	c,
Орел). Исследование влияния содержания меланина в коже на регистрируемые методом	
	228
Карсев А.Ю. (Санкт-Петербургский государственный политехнический университет).	
Новые возможности экспресс-контроля жидких, вязких и сыпучих сред ядерно-магнитным	М
спектрометром	230
Ким Д.В. Динамика цветовых координат цифровых изображений десны человека	
до и после воздействия полупроводникового лазера с длиной волны 980 нм	232
Козырева О.Д. Исследование влияния степени оксигенации крови на сигнал обратного	
рассеяния излучения при помощи численного моделирования	233
Найдёнов Е.В. (Филиал «Национальный исследовательский университет «МЭИ»	
в г. Смоленске). Разработка микромашинных кибернетических платформ для	
культивирования саморазвивающихся и функционирующих эндотелиальных капиллярных	[
сетей, сопряженных с организованными в пространстве in vitro микропотоками питательно	
	234
Новикова И.Н. (Государственный университет – учебно-научно-производственный	
комплекс). Исследование тканевого дыхания при холодовой прессорной физиологической	
пробе	
Нуждин К.А. Исследование материалов, применяемых в эндопротезировании	237
Подольский М.Д. Разработка схемы бесконтактного датчика электрокардиограммы	239
Резникова М.В. Клеточные модели оценки окислительной модификации белков	240
Свешникова А.И. (Государственный университет – учебно-научно-производственный	
комплекс, Орел). Оценка влияния меланина в коже на регистрируемые сигналы	
в оптической тканевой оксиметрии	241
Смолин В.А. (Филиал «Национальный исследовательский университет «МЭИ»	
в г. Смоленске). Разработка устройства для определения степени гидратации биологически	ΙX
тканей в норме и при различных патологиях	243
Чайников К.Н. Обработка мягкой биоткани in vitro излучением CO ₂ -лазера с различными	[
скоростями выполнения разреза	
Черемискина А.В., Богданова Н.Ю. (Санкт-Петербургский государственный	
политехнический университет). Метод диэлектрической спектроскопии в исследованиях	
белковых растворов	245

Белоусов К.И. (Университет ИТМО), **Кухтевич И.В.** (Университет ИТМО, Институт аналитического приборостроения РАН), **Букатин А.С.** (Институт аналитического