ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
ГЛАВА 1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕРДЕЧНО – СО-	
СУДИСТОЙ СИСТЕМЫ ЧЕЛОВЕКА НА ОСНОВЕ ГЕОМЕТРИИ	
СУБПРОЕКТИВНОГО ПРОСТРАНСТВА	8
ГЛАВА 2. МАТЕМАТИЧЕСКИЙ АППАРАТ ДИФФЕРЕНЦИАЛЬНЫХ	
ФОРМ ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ КРОВИ ПО УЧАСТКУ	
СОСУДА	14
2.1. Геометрия распределений	14
2.2. Дифференцируемые отображения	17
2.3. Тензор деформации	20
2.4. Конформное отображение при исследовании геометрии движущейся крови	25
2.5. Математический аппарат для моделирования движения крови, основанный на	
свойствах распределений при конформном отображении	37
2.6. Геодезическое отображение	43
2.7. Отображения при моделировании движения крови по участку сосуда	50
2.8. Геометрия специального соответствия	56
2.9. Особенности моделирования движения крови в сосуде	67
ГЛАВА 3. ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ ФОРМ ПРИ МОДЕ-	
ЛИРОВАНИИ ДВИЖЕНИЯ КРОВИ В СИСТЕМЕ КРОВООБРАЩЕНИЯ	74
3.1. Конформное отображение при моделировании движения крови в сердечно-	
сосудистой системе	75
3.2. Геометрические объекты, связанные со структурой сердечно - сосудистой си-	
стемы	97
3.3. Геодезическое отображение при моделировании движения крови в системе	
кровообращения	108
3.4. Векторы второго порядка при анализе структуры системы кровообращения	120
ГЛАВА 4. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ КРОВИ	
ПО УЧАСТКУ СОСУДА	129
4.1. Структурные основа моделирования системы кровообращения	129
4.2. Основные понятия модели участка сосуда	134
4.3. Поверхности постоянной энергии при моделировании движения крови	142
4.4. Винтовые линии при моделировании турбулентного движения крови	166
4.5. Геометрия ламинарного движения крови	190
4.6. Движение крови как геодезический поток	197
ГЛАВА 5. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ КРОВИ	
В СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЕ	204
5.1. Структурные особенности сердечно-сосудистой системы в математической	
модели	204
5.2. Дифференциальные операторы системы кровообращения	208
5.3. Основные кинематические уравнения	222
5.4. Уравнения Гельмгольца системы кровообращения	236
ГЛАВА 6. ОБЩИЙ СЛУЧАЙ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ	
СИСТЕМЫ КРОВООБРАЩЕНИЯ	239
6.1. Дифференциальные операторы	239
6.2. Моделирование движения крови	244
ГЛАВА 7. ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ СТРУКТУРНЫХ	• • •
СВОЙСТВ КРОВЕНОСНОЙ СИСТЕМЫ В МЕДИЦИНЕ	249

7.1. Анализ движения крови при характеристике шумов	249
7.2. Анализ состояния сердечно-сосудистой системы с применением дифферен-	
циальных форм	252
7.3. Структура автоматизированной системы поддержки принятия решений вра-	
ЧОМ	261
7.4. Проверка достоверности моделирования системы кровообращения	267
ГЛАВА 8. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА МАТЕМАТИЧЕСКОГО	
МОДЕЛИРОВАНИЯ	273
8.1. Экспериментальные подтверждения скоростных характеристик кровотока	273
Заключение	285
Литература	289