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Abstract: This article proposes the application of a new mathematical model of spots for solving 

inverse problems using a learning method, which is similar to using deep learning. In general, the 

spots represent vague figures in abstract “information spaces” or crisp figures with a lack of infor-

mation about their shapes. However, crisp figures are regarded as a special and limiting case of 

spots. A basic mathematical apparatus, based on L4 numbers, has been developed for the represen-

tation and processing of qualitative information of elementary spatial relations between spots. 

Moreover, we defined L4 vectors, L4 matrices, and mathematical operations on them. The devel-

oped apparatus can be used in Artificial Intelligence, in particular, for knowledge representation 

and for modeling qualitative reasoning and learning. Another application area is the solution of 

inverse problems by learning. For example, this can be applied to image reconstruction using ultra-

sound, X-ray, magnetic resonance, or radar scan data. The introduced apparatus was verified by 

solving problems of reconstruction of images, utilizing only qualitative data of its elementary rela-

tions with some scanning figures. This article also demonstrates the application of a spot-based in-

verse Radon algorithm for binary image reconstruction. In both cases, the spot-based algorithms 

have demonstrated an effective denoising property. 

Keywords: inverse problems; image reconstruction; vague figures; mental images; artificial  

intelligence 

 

1. Introduction 

Imaging based on the scan data of the object under study, and the processing of scat-

tered signals received by sensors, refers to inverse problems. Relevant direct problems are 

the modeling of wave signals scattered from an object with a known distribution of ma-

terial properties within it. [1,2]. In particular, medical devices that provide such imaging 

are CT, MRI, microwave tomography, electrical resistance and capacitance tomography, 

ultrasound imaging, and others [3]. There are other areas of application for such image 

reconstruction, including radar, ground-penetrating radar, and through-the-wall radar. 

Geophysics also uses visualization obtained by sounding the earth with the help of sound 

or electrical impulses, etc. [1,4]. Imaging in all these areas, with the exception of MRI, is 

associated with the solution of inverse scattering problems in one or another approximation [5]. 

The fundamental point here is that practically it is impossible to obtain a mathemat-

ically exact solution to the inverse problem, however, it is possible to approximately re-

construct an image with a finite spatial resolution. Generally speaking, inverse problems 

relate to ill-posed mathematical problems, and such property can be explained by a lack 

of information for an exact solution due to the noise and the finite amount of sensor sig-

nals. Therefore, approximate solution methods are used that utilize regularization, filter-

ing, interpolation, and other approaches [3]. For example, this applies to CT, MRI, and 

ultrasound, as well as to studies on microwave tomography [6–10]. 

Note that conventional approximate reconstruction methods such as filtered back-

projection in CT or simple inverse FFT in MRI are not always adequate and may lead to 

artifacts. Therefore, new methods based on appropriate models have been developed that 
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more strictly take into account the physics of objects and the real properties of sensors 

[11–14]. In a rigorous formulation, the inverse problem is considered a nonlinear optimi-

zation with the regularization to find the minimum of the residual error (the norm of de-

viation of the received and calculated sensor data). Its solution is sought by the iterative 

method, where the direct problem is solved and the current residual error is calculated at 

each iteration step [5]. This rigorous approach is especially relevant for microwave tomog-

raphy, where one has to solve the nonlinear inverse problem of electromagnetic scattering. 

Unfortunately, using simple and approximate reconstruction methods is inadequate here, 

since microwave scanning of a part of the body is performed in the near-field area of an-

tennas; furthermore, multi-pass scattering effects are significant [6–10]. A big issue is that 

iterative solutions, especially for electromagnetic scattering, require a long execution time 

and consume large computer resources [7]. 

In recent years, much attention has been paid to solving nonlinear inverse problems us-

ing the artificial intelligence (AI) approach, applying neural networks of deep learning [15–

21]. The idea of this method is that if the neural network is successfully trained on examples, 

then when new scattering signals are fed to the input of the network, the trained system can 

create the desired image directly on the basis of the acquired knowledge, without solving the 

complex inverse scattering problem. Another area of application of learning neural networks 

is their use for image recognition, classification, and segmentation [22–24]. 

However, many authors point out the disadvantage of the traditional model of arti-

ficial neurons in neural networks, which consists of excessive computational accuracy and 

an excessive number of adjustable system parameters [25]. Indeed, if the apparatus of 32-

bit floating-point numbers are utilized in learning algorithms for input signals, weight 

coefficients, activation, and loss functions, then a lot of the training operations lead to 

large consumption of computer resources and a long execution time. For example, the 

training time for image recognition (which is a simple task for humans) can be on the 

order of several weeks even in high-performance systems [26]. It cannot be implemented 

on compact devices with limited resources and limited power consumption. 

Therefore, intensive research is currently underway to develop algorithms using re-

duced bit width of numbers: 8 bits, 4 bits, 2 bits, and even 1 bit. This provides a rough 

approximation for all the network parameters and such optimized neural networks are 

called binarized [25]. It should be noted that deep learning networks, which are used, for 

example, for image recognition tasks, usually operate with 32-bit numbers, while it is ob-

vious that high accuracy is not required for such an image classification [26]. 

A new mathematical model of spots is proposed in [27,28] for the representation and 

processing of incomplete, inaccurate, or qualitative information. In particular, it allows 

for the creation of algorithms of a new type for AI and building neuromorphic systems, 

which operate in a way that is close to human thinking. Instead of real numbers, the pro-

posed model introduces logical L4 numbers, L4 vectors, and L4 matrices. The spot model 

allows one to represent mental images and semantic content of information, as well as 

make classification and fragmentation. A new approach to machine learning has also been 

suggested, which is applicable for solving inverse problems. In addition, a new architec-

ture of neural networks is proposed, consisting of layers that are modeled by L4 matrices, 

input and output data are L4 vectors, and weight coefficients are L4 numbers [27]. 

Thus, in the spots model, information representation, storage, and processing are car-

ried out using 4-bit logical L4 numbers, rather than 32-bit numbers that can significantly 

reduce the consumption of machine resources. Behind this, the developed learning algo-

rithm does not use such complex calculations and iterations as in the backpropagation 

algorithm for learning from examples [29]. 

The main idea of the spot theory is that the synthesis of a large amount of even insig-

nificant information allows one to extract detailed and even quantitative information 

about the object of interest. Since the ill-posedness of inverse problems leads to indefinite, 

fuzzy, and ambiguous solutions, the application of the spot apparatus seems to be quite 

adequate. 
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The proposed model turned out to be ideologically close to the research areas of mer-

eotopology and qualitative geometry [30–47], the idea of which was laid down by White-

head in 1929 [30]. On the other hand, the basic ideas of the spots model are also close to 

the rough set theory [48–55], the formal concept analysis [52,56–58], and the fuzzy set the-

ory [59], including fuzzy geometry [60,61]. Moreover, the suggested concept is in good 

agreement with the ideology of granular computing [62–68]. 

Instead of points, mereotopology uses regions of space as primitive spatial entities 

and utilizes qualitative information about their relations. Among other areas, it has been 

applied to geographical information science, and image analysis [38]. One of the im-

portant fields of mereotopology is region connection calculus (RCC) [34–36], which has 

two variants. RCC-8 defines eight relations between regions, including overlapping, dis-

connection, external connection, and connections (touch) of the region’s boundaries. Ben-

nett [42], as well as Jonsson and Drakengren [43] considered a shortened version of these 

relations—RCC-5, which does not consider the boundaries connection. A feature of RCC-

5 is the uncertainty of boundaries, since here it is impossible to distinguish internal points 

from boundary ones. 

Although most authors considered spatial relations as logical values, Egenhofer et al. 

[44,45] encoded them in form of logical tables. Namely, they introduced the concepts of 4-

intersection [44] and 9-intersection [45] matrixes, which are logical matrices that encode 

the spatial relations between spatial regions. Notice that these matrixes are similar but 

differ from the L4 numbers proposed in [27,28] because authors of [44,45] also consider 

relations with the boundaries. Clementini et al. [46] generalized 9-intersection matrixes, 

replacing intersections for the crisp boundary with intersections for broad boundaries. 

Stell [47] also considered the way of representation for spatial relations using 3 × 1 logi-

cal vectors created on the base of notions part and compliment only. Finally, Butenkov et 

al. [69] introduced 2 × 2 logic tables for Cartesian granules, which are equivalent to L4 

numbers for spots, and applied them for spatial data mining algorithms. 

The rough set theory suggested by Zdzisław Pawlak [48,50] is a mathematical ap-

proach to the representation of the vagueness. One of the main advantages of the rough 

set approach is the fact that it does not need any preliminary or additional information 

about data, such as probability in statistics, or membership in the fuzzy set theory. This 

theory regards sets with incomplete information that does not allow to distinguish ele-

ments in some of their subsets, which are called granules. Pawlak’s theory introduced 

such notions as the lower and upper approximations of rough sets, the boundary region, 

and even the membership function for elements, which is similar to that for the fuzzy sets. 

A general formulation and consideration of granules, including the problem of infor-

mation granulation, which was later called the concept of granular computing, were first 

carried out by Zadeh in [62]. His definition of granules: “the information may be said to 

be granular in the sense that the data points within a granule have to be dealt with as a 

whole rather than individually” corresponds to the equivalence classes of the universe. 

Zadeh regards both crisp and fuzzy granules and “considers granular computing as a 

basis for computing with words” [63]. The elements of a granule are indiscernible that 

“depends on available knowledge” [65]. The importance of the application of granulation 

and granular computing relates to the fact that such approximation can lead to simplifi-

cation in solving practical problems. 

The graph is a mathematical model convenient for the representation of the structure 

of links (labeled edges) between elements (nodes or vertexes) of the system under study 

[70]. Nowadays, the apparatus of graphs is well suited for the analysis and processing of 

digital images in digital geometry [71], and the analysis and metrics of the structure of the 

physical connection of brain neurons [72]. On the other hand, graph theory is actively 

used in AI to model semantic networks in the knowledge bases, which are called 

knowledge graphs [73–77]. Note that, unlike spots, the graph is only an abstraction for the 

representation of a structure of the relations between the entities, rather than a spatial 
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object. However, recent works utilize graphs embedded in some continuous space to re-

duce the dimension of the graph when processing its data [75–77]. 

Despite the ideological closeness to these theories, the proposed model of spots has 

a significantly different nature, since spots are not based on sets or fuzzy set concepts, and 

spot elements do not define. Instead of the elements, a spot can have a structure inside 

that is determined from spatial relations with other spots. Having elementary spatial 

properties, spots combine the concepts of discreteness and continuity, while graphs are 

discrete mathematical objects. Generally, the presence of similar mathematical models al-

lows us to use some approaches and ideas from them. 

2. Definition of Spots and the Apparatus of L4 Numbers 

Spots are mathematical objects with elementary spatial properties, for which their 

inner region, outer region (environment), and a logical connection between these regions 

for any two spots are defined. The logical connection 𝑎𝑏 of two spots 𝑎, 𝑏 is determined 

by two axioms [31,35] 

∀𝑎, 𝑎𝑎 = 1 (logical) (1) 

∀𝑎∀𝑏, 𝑎𝑏 = 𝑏𝑎 (2) 

Environments �̃�,  �̃� of spots 𝑎, 𝑏 are also considered to be spots, therefore, a logical 

connection is also defined for them, satisfying the axioms (1) and (2). Axiomatically, we 

regard spots do not connect their environments, that is 

𝑎�̃� = 0, 𝑏�̃� = 0 (3) 

In general, the “shape” of spots and the properties of their environment, such as di-

mension and curvature of space, are not predetermined but can be evaluated from quali-

tative information about their elementary spatial relations (ER) to other spots, such as 

separation, intersection, inclusion, indistinguishability, etc. We consider crisp geometric 

figures as a special limiting case of spots. 

Note that the connection can be defined not only in the case of the existence of a 

common region of space between two spots but also in a more general sense. For example, 

two geometric figures can be considered indistinguishable if they can be precisely coin-

cided by a rigid movement. In general, any spot mapping can be defined with help of ER. 

2.1. Definition of L4 Numbers 

The elementary relations can be formalized using logical L4 numbers [27]. For spots 

𝑎, 𝑏 and their environments �̃�, �̃� the L4 number ⟨𝑎|𝑏⟩ is defined as a table 

⟨𝑎|𝑏⟩ = [𝑎𝑏 𝑎�̃�
�̃�𝑏 �̃��̃�

] (4) 

where 𝑎𝑏, 𝑎�̃�… denote the logical connections. Such L4 numbers, in general, permit dis-

tinguishing up to 16 different ER between spots. Examples of the ER and their correspond-

ing L4 numbers are shown in Table 1. 

Table 1. Some ER of spots. 

Elementary Relations L4 Number 

intersection, 𝑎 >< 𝑏 [
1 1
1 1

] 

separation, 𝑎 <> 𝑏 [
0 1
1 1

] 

inclusion (more), 𝑎 > 𝑏 [
1 1
0 1

] 
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inclusion (less), 𝑎 < 𝑏 [
1 0
1 1

] 

indiscernibility, 𝑎 ≈ 𝑏 [
1 0
0 1

] 

We call these spatial relations as elementary relations because they carry the lowest-

level qualitative information about spots. However, a large amount of such qualitative 

data allows for extracting higher-level qualitative information and even numerical infor-

mation. 

The mathematical apparatus of the spot model is based on the L4 numbers, rather 

than on real numbers. As far as the basis of this apparatus is described in more detail in 

the previous works [27,28], here we will briefly outline the main content and reveal the 

meanings of the concepts introduced there. 

In [27,28], the basis of spots is defined as a collection of “known” spots that can be in 

some mutual ER. The representation of a spot by their ER on the basis of spots is a map-

ping or imaging of the spot on this basis. Note that the system of basis spots is analogous 

to the numerical basis functions, and the orthogonality of the base functions is analogous 

to the separated basis spots, which we call orthogonal spots. Let us call the collection of 

spots with a certain ER between them the structure of spots. The structure of the basis 

spots included in a spot 𝑎 will also be called the structure of the spot 𝑎. 

Note that spot mapping is generally similar to the concept of projection for crisp fig-

ures. Consequently, the spot is analogous to some volumetric object, which is determined 

by its projections on different planes. Hence, one can improve knowledge about the struc-

ture of the spot by fusion its mappings on different bases into a “volumetric” image. 

Let us define the operations union ∨ and the intersection ∧ for the spots, which per-

mits the creation of new spots. We suggest the following definitions, which are similar but 

different from those of the set theory: 

𝑐 = 𝑎 ∨ 𝑏 ↔  ∀𝑥 (𝑐𝑥 = 𝑎𝑥 + 𝑏𝑥)

𝑑 = 𝑎 ∧ 𝑏 ↔  ∀𝑥 (�̃�𝑥 = �̃�𝑥 + �̃�𝑥)
 (5) 

Here, the symbol + denotes the logical disjunction operation. Note that, in contrast to 

the sets, (5) does not define the images of spots 𝑐, 𝑑 absolutely, because they depend on 

the spots' basis {𝑥𝑖}. Following the equality 𝑐�̃� = 0, see (3), it is possible, for example, to 

derive the following equations from (5): 

𝑐 = ⋁𝑥𝑖

𝑖

, 𝑥𝑖 ∶ (�̃�𝑥𝑖 + �̃�𝑥𝑖 = 0) (6) 

The definitions (5) also permit to derive simple properties for zero spots ∅: 

𝑎 ∨ ∅ = 𝑎, 𝑎 ∧ ∅ = ∅ (7) 

and express intersection parts 𝐴, 𝐵, 𝐶, and 𝐷 of spots 𝑎 and 𝑏 in Figure 1, using the 

operation ∧: 

𝐴 = 𝑎 ∧ �̃�, 𝐵 = �̃� ∧ 𝑏, 𝐶 = 𝑎 ∧ 𝑏,  𝐷 = �̃� ∧ �̃� (8) 

 

Figure 1. Euler-Venn diagram for the elementary relations between spots. 
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2.2. Definition and Geometric Meaning of L4 Vectors and L4 Matrices 

As mentioned earlier, information about any spot can be defined by its mapping on 

some basis. Then it can be encoded as a vector with coordinates, corresponding to its ER 

with basis spots. Such a vector of L4 numbers is called an L4 vector. For example, the L4 

column vector 𝒂𝑋 [27] of the spot 𝑎, represented on the base 𝑋 = {𝑥𝑖}, is 

𝒂𝑋 ≡ [⟨𝑎|𝑥1⟩;  ⟨𝑎|𝑥2⟩; … ; ⟨𝑎|𝑥𝑛⟩] (9) 

where n is the number of spots in the basis 𝑋. L4 vector (9) is similar to a numerical vector 

but its elements are L4 numbers. On the other hand, mapping (9) is also similar to the 

projection of a 3D body on some plane, which, can only represent partial information 

about the body. 

Papers [27,28] introduce the idealized concept of atomic basis and atomic spots, which 

do not intersect each other and other spots. Note that the atomic spots are similar to points, 

pixels, voxels, or elements of sets. Another useful notion is orthogonal spots, for which their 

mutual ER is separated. For example, intersection parts of spots are orthogonal and can 

be regarded as some approximation for the atomic basis. 

The L4 matrix 𝐀 = 〈𝑌|𝑋〉 defines ER between the spots of two bases, 𝑋 = {𝑥𝑖} and 

𝑌 = {𝑦𝑗} and formalizes the mapping from 𝑋 basis to 𝑌 basis: 

〈𝑌|𝑋〉 ≡ [⟨𝑦𝑗|𝑥𝑖⟩] = [(𝒚1)𝑋;  (𝒚2)𝑋; … ; (𝒚𝑛)𝑋] (10) 

Here, (𝒚𝑗)𝑋
 are row L4 vectors of spot 𝑦𝑗, represented on the basis 𝑋. Note that the 

L4 matrix can be used to transform the L4 vector from one to another basis [27] which is 

similar to the mapping function in topology and geometry. Formally, it can be represented 

in the form of 

𝒂𝑌 = 〈𝑌|𝑋〉 𝒂𝑋  

however, there is no simple solution to define the rules for such a product, and we will 

address this issue in the next section. The exception is the special case of the L4-matrix, 

which we call the indistinguishability matrix that is similar to the numerical identity ma-

trix. The indiscernibility matrix 𝐈 has diagonal elements corresponding to the indiscerni-

bility and all other elements—to separation. Then multiplication of the L4 matrix 𝐈 and 

any L4 vector 𝒂 corresponds to an identity transformation: 

𝒂 = 𝐈 𝒂  

There is a special case when all the spots of two bases are separated that is analogous 

to orthogonal coordinates in geometry. It is obvious that in this case, it is impossible to 

obtain a mapping transformation using the product of an L4 matrix and L4 vector, and it 

is necessary to obtain additional independent data. 

2.3. Multiplication Rules for L4 Vectors and L4 Matrixes 

First, consider the simplest case of an atomic basis 𝐴 = {𝑢𝑖}, where basis spots are 

orthogonal and do not intersect other spots [27,28]. For it, one can define an ER ⟨𝑎|𝑏⟩𝐴 

between the spots 𝑎 and 𝑏 with respect to the basis 𝐴 and the “scalar” product of vec-

tors (𝒂𝐴, 𝒃𝐴) according to the rule 

⟨𝑎|𝑏⟩𝐴 = (𝒂𝐴, 𝒃𝐴) =

[
 
 
 
 
 ∑𝑎𝑢𝑖 ∙ 𝑏𝑢𝑖

𝑛

𝑖=1

∑𝑎𝑢𝑖 ∙ �̃�𝑢𝑖

𝑛

𝑖=1

∑�̃�𝑢𝑖 ∙ 𝑏𝑢𝑖

𝑛

𝑖=1

∑�̃�𝑢𝑖 ∙ �̃�𝑢𝑖

𝑛

𝑖=1 ]
 
 
 
 
 

 (11) 
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where the symbol “∙” denotes a logical conjunction. We will apply the same rule for an 

orthogonal basis 𝑈 = {𝑢𝑖}, consisting of separated spots. 

Let us regard a spot 𝑎, basis 𝐵 = {𝑏𝑖} and an atomic basis 𝐴 = {𝑢𝑖}. We suppose that 

𝑎 and all 𝑏𝑖 spots can be mapped on the atomic basis 𝐴. Then the rule for the product of 

the L4 matrix 〈𝐵|𝐴〉 (10) and L4 vector 𝒂𝐴 (9) can be defined as the following: 

𝒂𝐵 = 〈𝐵|𝐴〉 𝒂𝐴 = [⟨𝑎|𝑏𝑖⟩𝐴] (12) 

where L4 number ⟨𝑎|𝑏𝑖⟩𝐴 is defined in (11). Note that equation (12) defines the transfor-

mation of the mapping of the spot 𝑎 from basis 𝐴 to basis 𝐵. 

For an arbitrary basis 𝑋 = {𝑥𝑖}, when spots 𝑥𝑖 can be intersected, the definition of 
⟨𝑎|𝑏⟩𝑋 is more complicated. First, let us consider the orthogonal basis 𝑈 = {𝑢𝑖} of all in-

tersections of the spots in 𝑋 and find the vectors 𝒂𝑈 = [⟨𝑎|𝑢𝑘⟩] and 𝒃𝑈 = [⟨𝑏|𝑢𝑘⟩] on the 

basis 𝑈. Then, we define the following equality for calculation ⟨𝑎|𝑏⟩𝑋: 

⟨𝑎|𝑏⟩𝑋 = (𝒂𝑈 , 𝒃𝑈) = ⟨𝑎|𝑏⟩𝑈  

and apply the rule (11). We define the vectors 𝒂𝑈 and 𝒃𝑈 using the following formal ma-

trix equations: 

𝒂𝑈 = 〈𝑈|𝑋〉 𝒂𝑋, 

𝒃𝑈 = 〈𝑈|𝑋〉 𝒃𝑋 
(13) 

where 〈𝑈|𝑋〉 is the L4 matrix that consists on ⟨𝑢𝑖|𝑥𝑗⟩ elements and is used for mapping 

vectors from basis 𝑋 to basis 𝑈. 

To determine the transformation rule for (13), we first apply a convenient method of 

numbering the intersections {𝑢𝑘} of spots {𝑥𝑖}, using a binary code. Namely, generalizing 

(8), each 𝑢𝑘 can be defined in terms of the spots 𝑥𝑖 or �̃�𝑗 connected by operator ∧. For 

example, the binary index 𝑘 = 101…02 corresponds to the following spot 𝑢𝑘 [28]: 

𝑢𝑘 = 𝑥1 ∧ �̃�2 ∧ 𝑥3 …∧ �̃�𝑛 (14) 

ER ⟨𝑎|𝑢𝑘⟩ for any spot 𝑎 and for 𝑢𝑘 (14) can be found using the following approx-

imate equation [28] 

⟨𝑎|𝑢𝑘⟩ = [
𝑎𝑥1 ∙ 𝑎�̃�2 ∙ … ∙ 𝑎�̃�𝑛 𝑎�̃�1 + 𝑎𝑥2 + ⋯+ 𝑎𝑥𝑛

�̃�𝑥1 ∙ �̃��̃�2 ∙ … ∙ �̃��̃�𝑛 �̃��̃�1 + �̃�𝑥2 + ⋯+ �̃�𝑥𝑛
] (15) 

which defines the rule for the product 〈𝑈|𝑋〉 𝒂𝑋 in (13). A similar equation can be written 

for the spot 𝑏 to determine the product 〈𝑈|𝑋〉 𝒃𝑋 in (13). 

Equation (15) was tested in [28] when solving the problem of reconstruction of the 

shape of plane figures, processing its ER data with known Figures 4–6 of [28]. It turned 

out that (15) gives uncertainty in the form of a blurred boundary. However, it is possible 

to eliminate it if to apply additional rules, correcting ER ⟨𝑎|𝑢𝑘⟩ in (15): 

if {∀𝑥𝑗: 𝑎𝑥𝑗 = 0, 𝑢𝑘𝑥𝑗 = 0} 𝑡ℎ𝑒𝑛 𝑎 > 𝑢𝑘 

if { ∀𝑥𝑗: �̃�𝑥𝑗 = 0, 𝑢𝑘𝑥𝑗 = 0} 𝑡ℎ𝑒𝑛 𝑎 <> 𝑢𝑘 

(16) 

where the symbols <> and > denote the separation and inclusion (more) relations, re-

spectively (see Table 1). 

Equations (15) and (16) help to determine the general rule for multiplying an arbi-

trary L4 vector 𝒂𝑋 and an L4 matrix 𝐀 = 〈𝑌|𝑋〉 defined on the basis 𝑋 = {𝑥𝑖} and 𝑌 =

{𝑦𝑗}. We can write this rule in the following form: 

𝒂𝑌 = 〈𝑌|𝑋〉 𝒂𝑋 = 〈𝑌|𝑉〉 ∙ 〈𝑉|𝑊〉 ∙ 〈𝑊|𝑈〉 ∙ 〈𝑈|𝑋〉 𝒂𝑋 (17) 

Here the basis 𝑈 = {𝑢𝑖} consists of the intersections of the points 𝑥𝑖, 𝑉 = {𝑣𝑖} is the 

basis of the intersections of the spots {𝑦𝑗}, and 𝑊 = {𝑤𝑖} is the basis of the intersections 
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of the spots of 𝑈 and 𝑉 basis. Note that equation (17) should be considered as a series of 

transformations from one basis to another, namely 

𝒂𝑈 = 〈𝑈|𝑋〉 𝒂𝑋, 𝒂𝑊 = 〈𝑊|𝑈〉 𝒂𝑈, 𝒂𝑉 = 〈𝑉|𝑊〉 𝒂𝑊, 𝒂𝑌 = 〈𝑌|𝑉〉 𝒂𝑉 (18) 

Product 〈𝑈|𝑋〉 𝒂𝑋 can be calculated, using (15) and (16), but the vectors 〈𝑉|𝑊〉 𝒂𝑊 

and 〈𝑌|𝑉〉 𝒂𝑉—using (11), (12), regarding 𝑉, 𝑊 as an atomic basis. Finally, let us use the 

following natural rule for calculating the product 〈𝑊|𝑈〉 𝒂𝑈: 

if 𝑤𝑘 < 𝑢𝑖  then ⟨𝑎|𝑤𝑘⟩ = ⟨𝑎|𝑢𝑖⟩ (19) 

where symbols < denotes relation inclusion (less) (see Table 1). Note that rule (19) is also 

approximate. 

3. General Approach to Inverse Problems and Learning Using L4 Matrices 

3.1. Solution of Inverse Problems 

It follows from the definition of L4 matrices 〈𝑌|𝑋〉 (10) that its inverse matrix 〈𝑋|𝑌〉 

is equal to 

〈𝑌|𝑋〉−1 ≡ 〈𝑋|𝑌〉 = [⟨𝑥𝑖|𝑦𝑗⟩] (20) 

and hence it must always exist and be equal to the transposed matrix 〈𝑌|𝑋〉 with addi-

tional transposed elements (L4 numbers). Therefore, as it following from (17) and (20), 

formally the solution of the equation 𝒂𝑌 = 〈𝑌|𝑋〉 𝒂𝑋 can be represented as 

�̂�𝑋 = 〈𝑋|𝑌〉 𝒂𝑌 = 〈𝑋|𝑈〉 ∙ 〈𝑈|𝑊〉 ∙ 〈𝑊|𝑉〉 ∙ 〈𝑉|𝑌〉 𝒂𝑌 (21) 

where, as in (17), the basis 𝑈 consists of intersections of the spots in 𝑋, the basis 𝑉—

intersections of the spots in 𝑌 and 𝑊—intersections of the spots of 𝑈 and 𝑉 basis. Con-

sidering that equations (15), (17), and (19) are approximate, we can conclude that in the 

general case, the inverse solution (21) is also approximate: 

𝒂𝑋 ≅ �̂�𝑋 = 〈𝑌|𝑋〉−1 𝒂𝑌  

3.2. Solving Inverse Problems Using L4 Matrices by Learning Method 

As mentioned in the introduction, the practical application of solving inverse prob-

lems, especially electromagnetic inverse scattering, requires a large amount of computa-

tion time and resources. Alternative approaches involve the use of neural networks to 

train a solving system, which, after training, can make an inverse solution for newly meas-

ured data. In the spots model, this has an analogy with the situation when the matrix 𝐀 =
〈𝑌|𝑋〉 in (17) is unknown and it is wanted to be determined on training examples. Let us 

evaluate an unknown L4 matrix 𝐀 on the basis of a set of training examples {𝒙𝑖 , 𝒚𝑖}, using 

the equality 

𝒚𝑖 = 𝐀 𝒙𝑖 (22) 

We can regard 𝒙𝑖 , 𝒚𝑖 as L4 vectors for spots 𝑥𝑖 and 𝑦𝑖 that form the basis 𝑋 = {𝑥𝒊} 

and 𝑌 = {𝑦𝒊} of the training data. Then, we can compose an L4 matrix 〈𝑌|𝑋〉 and repre-

sent the matrix 𝐀 in (22) as: 

𝐀 = 〈𝐵𝑌|𝑌〉 ∙ 〈𝑌|𝑋〉 ∙ 〈𝑋|𝐵𝑋〉  (23) 

where 𝐵𝑋  and 𝐵𝑌  are atomic bases for L4 vectors 𝒙𝑖  and 𝒚𝑖 , correspondingly. Obvi-

ously, for the testing set {𝒙𝑖 , 𝒚𝑖} the matrix 〈𝑌|𝑋〉 is equal to the indistinguishability ma-

trix 𝐈. Note that equation (23) is a schematic interpretation of the learning process [29]. 

Let us consider the application of the learning system to obtain the inverse solution 

of Equation (23) 
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𝒃 = 〈𝐵𝑌|𝑌〉 ∙ 〈𝑌|𝑋〉 ∙ 〈𝑋|𝐵𝑋〉 𝒂  

To do this, we can use the transformation of the matrix 𝐀 (23), similar to (21), to 

represent the inverse solution in the following general form: 

𝒂 ≅ �̂� = 〈𝐵𝑋|𝑋〉 ∙ 〈𝑋|𝑌〉 ∙ 〈𝑌|𝐵𝑌〉 𝒃 (24) 

We should especially consider the case when input data 𝒄 and/or output data 𝒅 are 

numeric. Then, instead of matrixes 〈𝑌|𝐵𝑌〉 or 〈𝐵𝑋|𝑋〉 in (24) we have to apply the corre-

sponding operators 𝑩𝑋 and 𝑩𝑌 that transforms L4 data to numerical data or vice versa. 

Then, the forward problem has the form of 

𝒅 = 𝑩𝑌(𝒄𝑌) ∙ 〈𝑌|𝑋〉 ∙ 𝑩𝑋(𝒄)  

and its inverse solution instead of (24) can be represented in the following form: 

𝒄 ≅ 𝑩𝑋
−1(𝒅𝑋) ∙ 〈𝑋|𝑌〉 ∙ 𝑩𝑌

−1(𝒅)  (25) 

where 𝑩𝑋
−1 and 𝑩𝑌

−1 are the inverse operators. 

3.3. Image Reconstruction by Processing Qualitative Data 

Although the proposed theory is developed for spots, which in general correspond 

to vague figures, it is convenient to verify its mathematical apparatus on crisp figures, 

which are the limiting case of spots. Let us consider the figure under test as a conditionally 

unknown spot, and the figures, which are used for mapping this spot (or “sampling”) as 

the known basis of spots [28]. More specifically, we consider the shape reconstruction of 

a crisp plane figure, utilizing the only qualitative information of its ER with the bases 

figures without additional details about these relations. However, it is possible to infi-

nitely refine the reconstructed shape of the unknown figure by increasing the number of 

samplings and processing all the ER data. It may seem surprising, but it is theoretically 

possible, to reconstruct the shape of an object with absolute precision. This is a conse-

quence of the following theorem. 

Theorem 1. In order for two figures to be pointwise equal, it is necessary and sufficient that their 

elementary relations with any other figure of finite size be the same. 

Proof. Necessity. As can be seen from the diagram in Figure 2, the condition of equality 

of figures 𝑎 and 𝑏 is equivalent to the equality of both their intersection parts 𝐴 and 𝐵 

to the zero figure ∅. Let us suppose there is a figure 𝑐 that has different ER with 𝑎 and 

𝑏, i.e., different connection values with these figures. For example, 𝑎𝑐 = 0, 𝑏𝑐 = 1 (Figure 

2). Then {∃𝐸 = 𝑏⋀𝑐: 𝑎𝐸 = 0} → 𝐸 ⊂ 𝐵 = �̃�⋀𝑏 →  𝐵 ≠ ∅. Therefore, 𝑎 ≠ 𝑏 , which proves 

the necessity condition. 

Sufficiency. Let us prove this by contradiction. Assume that for two figures 𝑎 and 𝑏 

their ER is equal with any finite figure, but 𝑎 ≠ 𝑏. Then, (𝐴 ≠ ∅) ⋁ (𝐵 ≠ ∅) (see Figure 

2). If, for example, 𝐵 ≠ ∅, then ∃𝑐: {𝑎𝑐 = 0, 𝐵𝑐 = 1} → 𝑏𝑐 = 1 that contradicts the condi-

tion of equality ER with any finite figure. Therefore, the assumption 𝑎 ≠ 𝑏 is false, which 

proves the sufficiency condition. □ 
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Figure 2. Euler-Venn diagram for ER between figures 𝑎, 𝑏, and 𝑐. 

It follows from Theorem 1 that all information about the shape of each figure is con-

tained in the infinite set of its ER with all other figures of finite size. Therefore, in principle, 

it is possible to reconstruct this shape using such qualitative information. However, due 

to the incomplete, finite amount of ER data, figure shape reconstruction can only be ap-

proximate. This corresponds to the fact that the result of such a reconstruction corre-

sponds to a blurry figure, that is, to a spot. 

Note that the shape’s reconstruction, by processing qualitative data, refers to inverse 

problems. Indeed, its forward problems can be formulated as 

𝒂𝑋 = 〈𝑋|𝑃〉 𝒂𝑃 (26) 

where 𝑃 is a basis for atomic spots—pixels or voxels, 𝑋 = {𝑥𝒊} is a basis for scanning 

figures for testing, 𝒂𝑋—L4 vector of ER data for the reconstruction of the figure under test 

𝒂𝑃. Following (21), the reconstructed figure �̂�𝑃 is the inverse solution of (26) that, similar 

to (21), can be represented in the form of the equation 

�̂�𝑃 = 〈𝑃|𝑋〉 𝒂𝑋 = 〈𝑃|𝑈〉 ∙ 〈𝑈|𝑋〉 𝒂𝑋 (27) 

where 𝑈 is the basis of intersections of spots {𝑥𝒊}. The mapping 𝒂𝑈 = 〈𝑈|𝑋〉 𝒂𝑋 can be 

found using (15) and (16). 

3.4. Inverse Radon Algorithm for Binary Figures 

Let us consider scanning figures–squares as the basis 𝑋 = {𝑥𝒊}, and use the calculated 

sinograms (projections) 𝑆 of these squares as training data, which we will assign to the 

basis 𝑌 = {𝑦𝒊}. As before, {𝑥𝒊, 𝑦𝒊} will be considered training data for the learning system, 

and we will determine an algorithm for the inverse solution by learning. 

The forward problem is the Radon transform Sec. 8.7.3 of [2] that can be written in 

the form of 

𝒔 = 𝑹(𝒂𝑃) (28) 

where 𝑃 is the basis of pixels, 𝑹 is the Radon transform operator, 𝒔 is the sinograms of 

the 𝒂𝑃 image. Following (25), the inverse Radon solution of (28) can be represented as 

�̂�𝑃 = 〈𝑃|𝑈〉 ∙ 〈𝑈|𝑋〉 ∙ 〈𝑋|𝑌〉 ∙ 𝑩𝑌
−1(𝒔)  (29) 

where 𝑈 is the basis of intersections of {𝑥𝒊}. Note, the operator 𝑩𝑌
−1  depends on the 

training sinograms data 𝑆 and matrix 〈𝑌|𝑋〉 is the indiscernibility matrix 𝐈 for solving 

by learning methods, as it was mentioned before. Therefore, 

�̂�𝑃 = 〈𝑃|𝑈〉 ∙ 〈𝑈|𝑋〉 𝒂𝑋 ;   𝒂𝑋 = 𝒂𝑌 = 𝑩𝑌
−1(𝒔) (30) 

Let us find rules for calculation 𝒂𝑌 (30), defining such ER between sinograms that 

are presented in Figure 3. Here, small spiking sinograms (continue lines) correspond to 

relatively small basis squares 𝑥𝒊 and oval-type sinograms (dashed lines) correspond to 

ellipse figure 𝒂𝑃 (see Section 4.3). 
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(a) (b) (c) 

Figure 3. ER between sinograms of an ellipse and a base square. (a) Separation; (b) Inclusion; (c) 

Intersection. 

The main idea of suggesting an algorithm is that if the basis figure 𝑥𝒊 has such ER 

with the figure under test 𝑎 as separation or intersection, then there are projection angles 

for which their sinograms are separated or intersected. However, if 𝑥𝒊 is included in 𝑎 

then all their sinograms have ER inclusion as well. Hence, we can define the following 

rules for ER of projections 𝑠𝑋(𝑖, 𝑗, 𝑘) and 𝑠𝑎(𝑖, 𝑗, 𝑘), which are converted to logical values: 

𝒂𝑋(𝑖) = 〈𝑎|𝑥𝒊〉 = [
𝑎𝑥𝒊 1
�̃�𝑥𝒊 1

] 

𝑎𝑥𝒊 = ∑ ∑ 𝑠𝑎(𝑖, 𝑗, 𝑘) ∙ 𝑠𝑋(𝑖, 𝑗, 𝑘)𝑗𝒌   

�̃�𝑥𝒊 = ∑ ∑ ¬𝑠𝑎(𝑖, 𝑗, 𝑘) ∙ 𝑠𝑋(𝑖, 𝑗, 𝑘)𝑗𝒌   

(31) 

Here, ¬ is the logical negation, 𝑖-index corresponds to that of 𝑥𝒊 square, 𝑗-index 

corresponds to the projection coordinate 𝜉(𝑗) and 𝑘-index corresponds to the projection 

angle 𝛼0(𝑘) Sec. 8.7.3 of [2]. Using (30) and (31) we get a spot-based inverse Radon algo-

rithm for the reconstruction of binary images. 

4. Results of Image Reconstruction 

To illustrate the suggested theory, MATLAB programs were written that provide 

processing of ER data between the figure under test and basis spots (crisp figures) xi, 

which are scanning (or basis) squares. To obtain a better resolution, we utilize quite tight 

distribution of the basis spots that makes the intersections uk (14) to be relatively small. 

We used a computer with an AMD Ryzen 7 2700 X processor, 8 cores, 3.70 GHz, 32GB 

RAM, and no GPU. 

4.1. Reconstruction of Binary Images 

The ER data were obtained using scanning of 4 × 4 pixels squares with the scan pe-

riod 1 pixel and processed them using (27) and algorithm (15), (16). The number of basis 

squares was approx. 20,000, and the calculation time was about 9 min in all cases. 

To compare the original and reconstructed binary images we calculated the misfit 

error 𝑚𝑒𝑟 

𝑚𝑒𝑟 =
|𝑁𝑂𝐼 − 𝑁𝑅𝐼|

𝑁𝑂𝐼
 (32) 

where 𝑁𝑂𝐼  and 𝑁𝑅𝐼  are numbers of pixels that correspond to the inner regions of the 

original (noise-free) and the reconstructed images, correspondingly. 

Figure 4 represents the reconstruction of images of a five-pointed star without and 

with strong noise, utilizing only data from its ER with scanning squares. Note that Figure 

4d demonstrates the effective denoising capability of the algorithm (15), (16), (27). The 

image sizes were 128 × 128 pixels, and the misfit errors for the reconstructed images are 

𝑚𝑒𝑟 = 0.1% for Figure 4b, and 𝑚𝑒𝑟 = 3.1% for Figure 4d. 
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(a) (b) 

  

(c) (d) 

Figure 4. Results of reconstruction of five-pointed star based on qualitative data. (a) Original star; 

(b) Reconstructed star; (c) Original strong noisy star; (d) Reconstructed noisy star. 

Figure 5 demonstrates the reconstruction of hand-mask images—noise-free and 

strongly noisy, using similar ER data and rules. Note that Figure 5d also demonstrates the 

effective denoising capability of the algorithm (15), (16), (27). The image sizes were 

120 × 120 pixels and the misfit errors for the reconstructed images are 𝑚𝑒𝑟 = 3.1% (for 

Figure 5b), and 𝑚𝑒𝑟 = 4.7% (for Figure 5d). 

  

(a) (b) 

  

(c) (d) 

Figure 5. Results of reconstruction of a hand-mask image based on qualitative data. (a) Original 

image; (b) Reconstructed image; (c) Original strong noisy image; (d) Reconstructed noisy image. 

4.2. Reconstruction of Gray Scale Images 

To be able to apply the developed reconstruction algorithm (15), (16), (27) to gray-

scale images, it is necessary to add a new dimension to 2D spots corresponding to their 

intensity value. In order for this numerical coordinate to be consistent with the general 

spot ideology, we represent the intensity axes as a linear structure, a chain of intersected 

spots (Figure 6). 
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Figure 6. Representation of a numerical line as a chain of intersected spots. 

For example, these spots can be numerical intervals, and hence we can split the gray-

scale image into flat layers, corresponding to these intervals. Then one can reconstruct 

images in the layers independently and combine them again into the entire image. Results 

of the reconstruction are demonstrated in Figures 7–10, where the intensity axes of 

128 × 128 pixels images were divided into 20 layers. The number of basis squares was 

about 20,000, and the calculation times were 6–9 min. 

  

(a) (b) 

Figure 7. Reconstruction of a circle's image based on qualitative data. (a) Original image; (b) Recon-

structed image. 

  
(a) (b) 

Figure 8. Reconstruction of Shepp-Logan image based on qualitative data. (a) Original image; (b) 

Reconstructed image. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Results of reconstruction of MRI image based on qualitative data. (a) Original image; (b) 

Reconstructed image; (c) Original noisy image; (d) Reconstructed noisy image. 
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As before, the ER data were obtained using 4 × 4 pixels squares that were scanned 

in each of 20 layers, and their scan period was 1 pixel. The SNR, which is defined for an 

average image intensity, is 9.7 dB (for Figure 9c), 23.3 dB (for Figure 10c), and 9.3 dB (for 

Figure 10e). Note that Figures 9d and 10d,f also demonstrate the noise reduction ability of 

the reconstruction algorithm (15), (16), (27). 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 10. Results of reconstruction of MRI human brain image based on qualitative data. (a) Orig-

inal image; (b) Reconstructed image; (c) Original low noise image; (d) Reconstructed low noise im-

age; (e) Original noisy image; (f) Reconstructed noisy image. 

4.3. Inverse Radon Image Reconstruction 

We compared a conventional back-projection and a spot-based (31) algorithm for the 

reconstruction of binary images, which used under-sampled parallel-beam sinograms for 

6, 9, and 18 projection angles only. Figures 11 and 12 show the results of this comparison 

for the 128 × 128 pixels image reconstruction. The sinograms are calculated using the 

Radon transform, but they imitate the real experimental sinograms of X-ray transmission 

through the body in a CT system with parallel-beam geometry [3]. Note that typically a 

CT scanner collects projection signals in approximately 1° increments, and hence the sim-

ulated examples in Figures 11 and 12 are indeed highly under-sampled. 

Application of the back-projection algorithm with Hann filter is demonstrated in Fig-

ure 11 for two images of the ellipse: noise-free (Figure 11a) and strong noisy (Figure 11e). 

It is clear that the results of the noisy image reconstruction in Figure 11f–h demonstrate 

significant blurring for the reconstructed image. 

Figure 12 shows the results of the same image reconstructions, using the spot-based 

algorithms (30) and (31) with 5 × 5 pixels square and 1 pixel scan period. The number of 

basis squares was about 20,000, and the calculation times were about 6 min. These results 

of the reconstruction demonstrate the fact that the suggested algorithm allows the recon-

struction of unblurred images even for a small number of projection angles. Images in 

Figure 12f–h also demonstrate a strong denoising effect for the spot-based algorithm, in 

contrast to the filtered back-projection algorithm. The misfit errors 𝑚𝑒𝑟 (32) were 3.6% 

(for Figure 12b,f), 4.8% (for Figure 12c,g), and 5.6% (for Figure 12d,h). 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 11. Examples of reconstruction of two ellipses, using their under-sampled parallel-beam si-

nograms by the back-projection algorithm with Hann filter. (a) Original ellipse; (b–d) Reconstructed 

images for 18, 9, and 6 projection angles, correspondingly; (e) Original strong noisy ellipse; (f–h) 

Reconstructed images for 18, 9, and 6 projection angles, correspondingly. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 12. Reconstruction of two ellipses, using their different under-sampled sinograms. (a) Original 

ellipse; (b–d) Reconstructed images for 18, 9, and 6 projection angles, correspondingly; (e) Original 

strong noisy ellipse; (f–h) Reconstructed images for 18, 9, and 6 projection angles, correspondingly. 

5. Discussion 

In [27], the use of the apparatus of the spots model for creating neural networks of a 

new type is considered, in which each layer corresponds to an L4 matrix and L4 numbers 

are used instead of real numbers. Here, the L4 vectors play the role of input and output 

signals for each layer, and the L4 matrix of each layer plays the role of the weight matrix. 

For example, Equations (21) and (23) can be implemented using such a neural network, 

which consists of 4 and 3 layers, respectively. In addition, it is possible to create a neural 

network in the form of a neuromorphic electronic device built on solid-state elements such 

as field-effect transistors (FETs), FeFETs, or memristors [27]. 
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The potential advantage of the proposed neural networks over conventional ones is, 

in particular, that the L4 matrix apparatus does not use real numbers with complex calcu-

lations during iterations in the backpropagation algorithm of learning by examples. In-

stead, Equation (24) uses the inverse matrix product. Although the proposed algorithms 

are approximate, they are adequate to the fact that it is almost always impossible to obtain 

an exact solution to inverse problems due to the finite number of measured signals. In 

addition, the tasks of recognition and classification, in principle, do not belong to the class 

of tasks that require accurate calculations. 

The reconstructed images in Figures 4, 5, and 7–12 demonstrate a good denoising 

ability of the proposed algorithm. This property relates to the fact that scanning squares 

of 4 × 4 or 5 × 5 pixels plays the role of a spatial filter and averages the sampled data. 

However, the spatial resolution of the reconstructed image is determined by the scan pe-

riod of 1 pixel. This can be explained using Formulas (15) and (27), from which it follows 

that the resolution corresponds to the intersections size of 1×1 pixels. 

An imaging algorithm using the spot-based inverse Radon transformation (Equation 

(31) and Figure 12) illustrates the processing of qualitative data for solving by learning. 

Indeed, sampling figures are basis spots and also relates to the training set, whereas the 

figure under test corresponds to the test example in the machine learning paradigm [29]. 

Finally, the reconstructed image, which is mapped on the basis of the intersections, corre-

sponds to the solution of the trained system. 

As it was noted in the Introduction, we can draw a general conclusion about the ide-

ological proximity of the models of the spots and rough sets [48–52], although they have 

a fundamental difference. In addition, there are several close concepts between the spot 

model and the rough set theory (see Table 2). 

Table 2. Analogies between the concepts of rough sets and spots. 

Concepts of the Rough Set Theory Concepts of the Spots Model 

elements of the universe atomic basis 

granules spots 

attributes basis of spots 

attributes values L4 numbers 

boundary region boundary 

lower approximation inner region 

upper approximation inner region + boundary 

As it is shown in Table 2, spots are similar to granules, which is also the main concept 

in the granular computing (GC) research area [62–68]. A comparison of the spot and gran-

ule concepts in GC allows us to conclude that both models are also very close in many 

aspects. 

The suggested spots model can be used for the theory of qualitative geometry (QG). 

For this application, it is necessary to introduce new concepts that are low-level analogies 

of the notion in the geometry and topology, including line, surface, dimensionality, cur-

vature of space, etc. Based on the CG, one can introduce the concept of a semantic infor-

mation space, which is an analogue of an information system characterized by an infor-

mation table and is used, for example, in the theory of rough sets [50,52]. 

6. Conclusions 

This article is devoted to the description of the concept and the basis of the apparatus 

of new mathematical objects–spots, which are introduced to represent and process quali-

tative data. It can be used to model human mental images, perceptions, and reasoning in 

AI. Furthermore, this paper demonstrates another application of the developed appa-

ratus—for solving inverse problems by the learning method. 
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The proposed model uses such qualitative information about spots as elementary re-

lations between them and introduces L4 logical numbers that encode these relations. 

Based on L4 numbers, the theory introduces L4 vectors and L4 matrices using the analogy 

with numerical matrix algebra. Although L4 numbers correspond to an elementary level 

of qualitative data, fusing a large number of them allows you to extract a higher level of 

information, including numerical. 

Equations have been derived for reconstructing an image using only qualitative in-

formation about its elementary relations with a set of base figures. A general scheme for 

solving inverse problems for L4 and numerical data is proposed, including a learning 

method for solving. 

The introduced apparatus was tested by solving image reconstruction problems us-

ing only qualitative data of its elementary relations with the scan figures. The application 

of spot-based inverse Radon’s algorithm for the reconstruction of a binary image was also 

demonstrated. 

Further research in the field of the proposed theory involves the development of al-

gorithms for solving various inverse problems, including inverse electromagnetic scatter-

ing. Another goal of the work is to design neural networks based on the proposed spots 

model, where each layer corresponds to the L4 matrix. 
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